Roger Erb

Optik mit GeoGebra

DE GRUYTER

Inhalt

Vorwort — V

1	Einleitung — 1
1.1	Einsatz von GeoGebra in Lehre und Unterricht — 2
1.2	Anwendung in der Optik —— 3
1.3	Experimente —— 5
1.4	Modell des Sehvorgangs — 5
1.4.1	Modell: Quelle-Empfänger —— 6
2	Ausbreitung von Licht — 9
2.1	Geradlinige Ausbreitung —— 10
2.1.1	Modell: Geradlinige Ausbreitung —— 11
2.1.2	Modell: Schattengrenze —— 12
2.2	Die Geschwindigkeit des Lichts —— 13
2.2.1	Modell: Lichtgeschwindigkeit (a) —— 15
2.2.2	Modell: Lichtgeschwindigkeit (b) —— 15
2.3	Reflexion von Licht —— 16
2.3.1	Modell: Reflexionsgesetz —— 17
2.3.2	Modell: Bild am Planspiegel (a) —— 20
2.3.3	Modell: Schatten am Planspiegel —— 22
2.3.4	Modell: Bild am Planspiegel (b) —— 23
2.4	Winkelspiegel —— 24
2.4.1	Modell: Winkelspiegel (a) —— 25
2.4.2	Modell: Winkelspiegel (b) —— 25
2.4.3	Modell: Winkelspiegel (c) —— 26
2.5	Hohlspiegel und Wölbspiegel —— 26
2.5.1	Modell: Hohlspiegel und Wölbspiegel —— 29
2.5.2	Modell: Parallelstrahl —— 32
2.6	Ellipsenspiegel —— 33
2.6.1	Modell: Ellipsenspiegel —— 34
2.7	Brechung —— 34
2.7.1	Modell: Brechung —— 35
2.8	Brechung an optischen Linsen — 36
2.8.1	Modell: Sammellinse —— 37
2.8.2	Modell: Zerstreuungslinse —— 39
2.9	Kartesische Ovale —— 40
2.9.1	Modell: Kartesisches Oval (a) —— 42

2.9.2	Modell: Kartesisches Oval (b) —— 43
2.9.3	Modell: Kartesisches Oval (c) —— 44
3	Optische Geräte und Phänomene —— 47
3.1	Bildentstehung an dünnen Linsen — 48
3.2	Verwendung von Linsen —— 49
3.2.1	Modell: Linsengleichung —— 50
3.2.2	Modell: Linse (a) —— 52
3.2.3	Modell: Linse (b) —— 53
3.2.4	Modell: Linse (c) —— 54
3.3	Fernrohr —— 55
3.3.1	Modell: Astronomisches Fernrohr —— 57
3.4	Mikroskop —— 58
3.4.1	Modell: Mikroskop —— 58
3.5	Schusterkugel —— 59
3.5.1	Modell: Schusterkugel —— 59
3.6	Dispersion —— 61
3.6.1	Modell: Dispersion —— 62
3.7	Optische Erscheinungen in der Atmosphäre —— 62
3.7.1	Modell: Regenbogen —— 65
3.7.2	Modell: Halo —— 67
4	Wellenoptik —— 69
4.1	Das Wellenmodell des Lichts —— 70
4.2	Zeigermodell —— 74
4.2.1	Modell: Zeiger —— 74
4.2.2	Modell: Zeiger – Auslenkung —— 77
4.2.3	Modell: Zeigermodell Beugung —— 81
4.3	Lage der Minima und Maxima bei der Spaltbeugung —— 81
4.3.1	Modell: Beugung am Einzelspalt – vereinfacht —— 85
4.4	Fraunhofer'sche und Fresnel'sche Beugung —— 87
4.4.1	Modell: Beugung am Einzelspalt (a) —— 88
4.4.2	Modell: Beugung am Einzelspalt (b) —— 92
4.4.3	Modell: Beugung am Einzelspalt (c) —— 92
4.4.4	Modell: Beugung am Einzelspalt (d) —— 95
4.5	Interferenz am Doppelspalt —— 97
4.5.1	Modell: Interferenz am Doppelspalt (a) —— 99
4.5.2	Modell: Interferenz am Doppelspalt (b) —— 101
4.5.3	Modell: Interferenz am Doppelspalt (c) —— 103
4.6	Interferenz an vielen Spaltöffnungen —— 103
4.6.1	Modell: Interferenz am Dreifachspalt —— 104
4.6.2	Modell: Interferenz am Gitter (a) —— 106

4.6.3	Modell: Interferenz am Gitter (b) —— 107
4.7	Auflösungsvermögen —— 107
4.7.1	Modell: Auflösungsvermögen —— 108
5	Weitere Elemente der Wellenoptik —— 111
5.1	Polarisation —— 112
5.1.1	Modell: Polarisation (a) —— 112
5.1.2	Modell: Polarisation (b) —— 115
5.2	Zonengitter —— 115
5.2.1	Modell: Zonengitter (a) —— 117
5.2.2	Modell: Zonengitter (b) —— 119
5.3	Zonenplatte und Holografie —— 121
5.3.1	Modell: Zonenplatte (a) —— 124
5.3.2	Modell: Zonenplatte (b) —— 124
5.4	Holografie —— 126
5.4.1	Modell: Hologramm —— 128
5.5	Farben dünner Schichten —— 132
5.5.1	Modell: Dünne Schicht (a) —— 135
5.5.2	Modell: Dünne Schicht (b) —— 138
5.5.3	Ölschicht auf einer Wasserpfütze —— 139
6	Quantenoptik —— 141
6.1	Quantisierung und Wahrscheinlichkeitsdeutung —— 142
6.2	Fotoeffekt —— 144
6.2.1	Modell: Fotoeffekt —— 147
6.3	Quanteninterferenz —— 147
6.3.1	Modell: Quanteninterferenz —— 151
6.4	Verschränkung —— 154
6.4.1	Modell: Verschränkung —— 156
7	Minkowski-Diagramme in der Relativitätstheorie —— 159
7.1	Spezielle Relativitätstheorie —— 160
7.2	Minkowski-Diagramme —— 162
7.3	Minkowski-Diagramme ruhender und bewegter Objekte —— 162
7.3.1	Modell: Minkowski-Diagramm (a) und (b) —— 162
7.3.2	Modell: Minkowski-Diagramm (c) —— 163
7.4	Gleichzeitigkeit —— 163
7.4.1	Modell: Minkowski-Diagramm (d) —— 165
7.4.2	Modell: Minkowski Diagramm (e) —— 166
7.5	Zwillingsparadoxon —— 166
7.5.1	Modell: Minkowski-Diagramm (f) —— 167

X — Inhalt

Literatur — 169

Stichwortverzeichnis — 170