Ort, Zeit und Geschwindigkeit

- Zeit t (time) in s (Sekunden)
- Weg s (spatium Raum, Ausdehnung, Entfernung) in m (Meter)
- Geschwindigkeit \vec{v} (velocity) in $\frac{m}{s}$ (Meter pro Sekunde)
- Beschleunigung \vec{a} (acceleration) in $\frac{m}{s^2}$, $\vec{a} = \frac{d\vec{v}}{dt}$; eine Beschleunigung liegt auch vor, wenn sich nur die Richtung des Geschwindigkeit ändert, aber der Betrag der Geschwindigkeit konstant bleibt (z.B. Rotation mit konstanter Winkelgeschwindigkeit).
- (Ruck \vec{j} (jerk) in $\frac{m}{s^3}$: z.B. bei Übergang von geradliniger Bewegung ($\vec{a} = 0$) zu kreisförmiger Bewegung ($\vec{a} \neq 0$) Eisenbahnkurven, Hochschaubahn; sanfter Übergang von geradliniger Bewegung in kreisförmige Bewegung durch Euler-Spirale (Klothoide): Krümmung proportional zu Bogenlänge).

Diverse Zusammenhänge bei geradliniger Bewegung:

Ist $t \mapsto s(t)$ der nach der Zeit t zurückgelegte Weg, dann ist

- $v(t) = s'(t) = \frac{ds}{dt}$ (Physik: $\dot{s}(t)$) die Momentangeschwindigkeit (Steigung der Tangente).
- $\bar{v} = \frac{\Delta s}{\Delta t} = \frac{s_2 s_1}{t_2 t_1}$ (Differenzenquotient) die mittlere Geschwindigkeit im Zeitintervall $[t_1; t_2]$ (Steigung der Sekante).
- $\int_{t_1}^{t_2} v(t)dt$ der zwischen t_1 und t_2 zurückgelegte Weg.
- $a(t) = v'(t) = s''(t) = \frac{d^2s}{dt^2}$ (Physik: $\ddot{s}(t)$), $\int_{t_1}^{t_2} a(t)dt$ ist die Geschwindigkeitsänderung zwischen t_1 und t_2 .
- $\bar{a} = \frac{\Delta v}{\Delta t} = \frac{v_2 v_1}{t_2 t_1}$ (Differenzenquotient) die mittlere Beschleunigung im Zeitintervall $[t_1; t_2]$ (Steigung der Sekante).
- $\int_{t_1}^{t_2} a(t)dt$ die Geschwindigkeitszunahme zwischen t_1 und t_2 .

Wichtige Spezialfälle:

• Gleichförmige Bewegung: v = const., somit a = 0 und

$$s(t) = vt + s_0$$

 $(s_0...Anfangsposition)$

• Gleichmäßig beschleunigte Bewegung: a = const., somit $v(t) = at + v_0$ (v_0 ...Anfangsgeschwindigkeit),

$$s(t) = \int_0^t v(t')dt' = a\frac{t^2}{2} + v_0t + s_0,$$

1