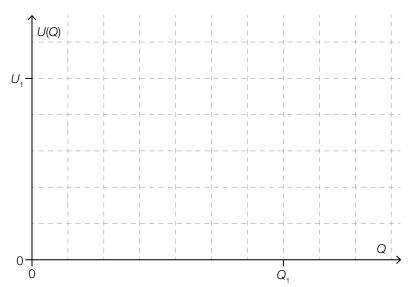
Aufgabe 2

Kondensator

Ein Kondensator ist ein elektrisches Bauelement, mit dem elektrische Ladung und die daraus resultierende elektrische Energie gespeichert werden kann.


Eine einfache Form des Kondensators ist der sogenannte *Plattenkondensator*. Er besteht aus zwei einander gegenüberliegenden elektrisch leitfähigen Flächen, die als *Kondensatorplatten* bezeichnet werden.

Das Verhältnis zwischen der gespeicherten Ladung Q und der an die Kondensatorplatten angelegten (Gleich-)Spannung U wird als Kapazität C bezeichnet.

Es gilt $C = \frac{Q}{U}$, wobei C in der Einheit Farad angegeben wird.

Aufgabenstellung:

- a) Ein Kondensator mit einer bestimmten Kapazität C wird bis zur Ladungsmenge Q_1 aufgeladen, die gemessene Spannung $U(Q_1)$ hat dann den Wert U_1 .
 - A Skizzieren Sie in der nachstehenden Abbildung die Spannung *U* beim Ladevorgang am Kondensator in Abhängigkeit von der Ladung *Q*!

Die in diesem Kondensator gespeicherte Energie W kann mithilfe der Formel $W = \int_0^{Q_i} U(Q) dQ$ berechnet werden.

Geben Sie eine Formel für die gespeicherte Energie W in Abhängigkeit von U_1 und C an!

b) Bei einem Ladevorgang kann die Spannung zwischen den Kondensatorplatten als Funktion U in Abhängigkeit von der Zeit t durch $U(t) = U^* \cdot \left(1 - e^{-\frac{t}{\tau}}\right)$ beschrieben werden. Dabei ist $U^* > 0$ die an den Kondensator angelegte Spannung und $\tau > 0$ eine für den Ladevorgang charakteristische Konstante. Der Ladevorgang beginnt zum Zeitpunkt t = 0.

Die Zeit, nach der die Spannung U(t) zwischen den Kondensatorplatten 99 % der angelegten Spannung U^* beträgt, wird als *Ladezeit* bezeichnet. Bestimmen Sie die Ladezeit eines Kondensators in Abhängigkeit von τ !

Geben Sie eine Formel für die momentane Änderungsrate der Spannung zwischen den Kondensatorplatten in Abhängigkeit von t an und zeigen Sie mithilfe dieser Formel, dass die Spannung während des Ladevorgangs ständig steigt!